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ABSTRACT

Existing motion style transfer methods trained with unpaired
samples tend to generate motions with inconsistent content
or inconsistent number of frames when compared with the
source motion. Moreover, due to the limited training samples,
these methods perform worse in unseen style. In this paper,
we propose a novel unpaired motion style transfer framework
that generates complete stylized motions with consistent con-
tent. We introduce a motion-oriented projection flow network
(M-PFN) designed for temporal motion data, which encodes
the content and style motions into latent codes and decodes
the stylized features produced by adaptive instance normal-
ization (AdaIN) into stylized motions. The M-PFN contains
dedicated operations and modules, e.g., Transformer, to pro-
cess the temporal information of motions, which help to im-
prove the continuity of the generated motions. Comparisons
with the state-of-the-art methods show that our method effec-
tively transfers the style of the motions while retaining the
complete content and has stronger generalization ability in
unseen style features.

Index Terms— motion generation, style transfer, flow
network, AdaIN

1. INTRODUCTION

Generating various stylized motions can greatly help produce
realistic and expressive character animation which plays a
fundamental role in diverse applications such as human an-
imation, games, robotics, etc. While using motion capture
(MoCap) technologies to obtain different styles of motions
is time-consuming and requires expensive equipment, style
transfer based on existing motions is a more economical and
feasible direction.

Motion style is an abstract concept that is difficult to
be described by precise mathematical definitions. Recently,
data-driven methods (e.g., deep learning) have shown strong
ability in representing style with latent codes [1–5], but most
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of them rely on paired samples. The acquisition of such paired
samples is tedious and requires actors to perform several mo-
tions with almost the same steps and different styles.

Training motion style transfer models with unpaired sam-
ples alleviates the need for paired data. The model proposed
by Aberman et al. [6] transfers the style from videos to mo-
tions, but tends to generate motions with inconsistent content.
Wen et al. [7] aim at synthesizing high-quality stylized mo-
tions, but suffer from issues of producing incomplete motion
content and requiring more style motion frames than the con-
tent ones due to its heavy dependence on explicit context in-
formation. To address these issues, we propose an unpaired
motion style transfer framework that is able to transfer styles
between motion clips of arbitrary length and generate com-
plete stylized motions with consistent content.

In the framework, we introduce a motion-oriented projec-
tion flow network (M-PFN) which is modified from the pro-
jection flow network (PFN) [8] to adapt to the temporal mo-
tion sequences. As shown in Fig. 1, the M-PFN first encodes
the input content and style motion clips through its forward
propagation procedure, and extracts their latent features in a
lossless manner. The two latent codes are fused in an adaptive
instance normalization (AdaIN) layer [9] to be a stylized fea-
ture vector, which is subsequently passed to the reverse prop-
agation of M-PFN to reconstruct the stylized motion. With
the reversible transformation of the M-PFN, the framework is
able to ensure the consistency of the content of the generated
motions.

The PFN [8] utilizes convolutions to perform expressive
transformation for image data, however, they do not work
well with the temporal information of motion data and may
cause discontinuous results when transferring style to the en-
tire sequence directly. To overcome this issue, our motion-
oriented PFN (M-PFN) replaces the convolution modules
with Transformer [10], which has been proven to have su-
perior ability in processing sequential data [11] and is able to
pay more attention to long-term and global information. Fur-
thermore, the self-attention mechanism implicitly models the
relationship between each frame pair, which offers sufficient
context information and guarantees the completeness of the
generated frames. We also replace the squeeze operations in
PFN with interpolation ones to maintain the temporal dimen-
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Fig. 1. Network architecture of our proposed motion style transfer framework. It includes a motion-oriented projection flow
network (M-PFN) for extracting latent features of motions, and an adaptive instance normalization (AdaIN) layer for style
transfer of latent features. In addition, there is an interpolation operation for pre-process and post-process of motions.

sion for the motions.
We evaluate our approach through comprehensive abla-

tion studies and comparisons with state-of-the-art methods.
The experiments show that our method is able to generate vi-
sually pleasing stylized motions while maintaining the com-
pleteness and consistency of the content motions. In addition,
while the training samples are limited, the results demonstrate
that our approach generalizes better to unseen motion styles
compared to the existing methods.

In summary, we make the following major contributions:

• A novel unpaired motion style transfer framework that
transfers styles between motion sequences of arbitrary
length and generates complete stylized motions with
consistent content.

• A motion-oriented projection flow network (M-PFN)
designed for temporal motion data, which employs
Transformer to model the long-term information and
an interpolation operation to maintain the temporal di-
mension.

• In depth comparisons with existing approaches, which
demonstrate the effectiveness and the generalization
ability in unseen styles of our approach.

2. RELATED WORK

2.1. Motion Style Transfer

Data-driven motion style transfer approaches can be divided
into two streams: supervised and unsupervised approaches.
Supervised algorithms [1–5] rely on paired samples during
training, but the collection of paired samples needs a huge
amount of user labour and expensive equipment.

Recently unsupervised approaches have been introduced
and make it possible to train motion style transfer models with
unpaired samples. Aberman et al. [6] propose to transfer style
from videos to motions based on adaptive instance normal-
ization (AdaIN) [9]. The convolutional encoder which is not
reversible tends to lose necessary information and generates

motions with inconsistent content. Wen et al. [7] introduce
a motion style transfer method based on generative flow net-
work [12] for synthesizing high-quality stylized motions, but
requires more style motion frames than the content ones to
provide sufficient context information. Moreover, it has an
inclination to produce incomplete motion content due to the
lack of context information in the first few frames of the input
content motions.

Compared with the two methods above, our approach is
able to produce stylized motions with consistent content and
complete output frames. Furthermore, there is no constraint
on the length of the input motion sequences.

2.2. Image Style Transfer

Most motion style transfer algorithms [6, 7] adopt ideas from
the field of image style transfer because of the intrinsic corre-
lations between them. Image style transfer has been broadly
studied these years [8, 9, 13, 14]. Gatys et al. [13] show that
the style and content of images can be represented by statis-
tics of deep features extracted from a pretrained classification
network. Ulyanov et al. [14] propose an instance normaliza-
tion (IN) layer and show that the style can be manipulated by
modifying the second order statistics (mean and variance) of
channels of intermediate layers. Inspired by this idea, Huang
et al. [9] propose an adaptive instance normalization (AdaIN)
layer to modify the statistics of deep features of the input con-
tent with the encoded style code. We integrate the AdaIN
layer into our framework that is required to generate a styl-
ized feature vector based on the encoded content and style
features.

In order to overcome the issue of content leakage of im-
ages and improve the consistency of content, An et al. [8]
propose an ArtFlow framework containing a projection flow
network (PFN), which includes squeeze operations to reduce
the resolution of features while keeping the feature informa-
tion, and 2D convolution-based modules to process the spa-
tial features. We exploit the idea of the PFN, but replace the
squeeze and 2D convolution operations designed for 2D im-



ages with ones for temporal motion data, i.e., sequence inter-
polation and Transformer networks [10].

3. METHOD

3.1. Overview

Given a content motion clip ms with content m and style s,
and a style motion clip nt with content n and style t, our
motion style transfer framework aims at generating a stylized
motion sequence mt with content m and style t. The architec-
ture of the proposed motion style transfer framework is illus-
trated in the Fig. 1. It consists of a motion-oriented projection
flow network (M-PFN) and an unbiased style transfer module
AdaIN. Given a content input ms and a style input nt, we first
perform an interpolate operation on the motion frames to in-
crease the time dimension. Then the interpolated sequences
from style and content domains are fed into the M-PFN for
lossless feature extraction, and the M-PFN produces latent
codes zc and zs for content and style, respectively. Next, with
the two extracted latent codes, the AdaIN layer performs un-
biased style transfer and generates the latent code zstylized for
the stylized motion. Finally, the zstylized is reconstructed to a
stylized motion mt via the reverse propagation procedure of
the M-PFN.

3.2. Motion-oriented Projection Flow Network (M-PFN)

3.2.1. Original Projection Flow Network (PFN)

The original Artflow [8] is designed for image data, and use
squeeze operations in the proposed PFN to reduce the spatial
size of 2D feature maps and expand their channel dimension.
Apart from the squeeze operations, PFN contains a chain of
three transformations, i.e., Actnorm, invertible 1×1 convolu-
tion and additive coupling. Each module is reversible to en-
sure that the information is lossless in the forward and reverse
propagation process. The Actnorm layer is designed to as-
sign zero mean and unit variance to each channel of features
to facilitate subsequent calculations. The invertible 1×1 con-
volution layer is used to permute the channel dimensions of
feature maps, so that each dimension can affect all the other
dimensions. The additive coupling layer is a special case of
affine coupling proposed by Dinh et al [15]. It performs non-
linear transformations to one part of the input, and the remain-
ing part is kept unchanged. Thus, the reversible transforma-
tion of the flow is computationally efficient.

3.2.2. Motion-oriented Modifications

When the squeeze operations which reduce the spatial size
of image data are applied to temporal type motion data, the
time dimension is compressed, which leads to shaking in the
generated motions. Therefore, we replace the squeeze oper-
ations with interpolation ones to increase the time dimension

of motion features, which benefits the training of style fea-
tures. Specifically, we use the nearest neighbor interpolation
to double the frames before inputting the motion sequences to
the M-PFN.

The additive coupling layer in the original PFN uses sev-
eral convolutional modules for processing images. Given that
convolutions tend to fail at modeling the temporal informa-
tion, we replace them with Transformer encoding blocks [10]
to capture the global and long-term sequence information of
motions. The computation of the additive coupling layer is
then formulated as follow:

z1, z2 = split(x), (1)
z′2 = Transformer (concat (z1, xrot)) + z2, (2)
y = concat (z1, z

′
2) , (3)

where x is the input features and y output ones. The split(·)
and concat(·) are two functions for splitting and concatena-
tion. The xrot denotes the complete motion sequence includ-
ing the root information as the control signal. We concate-
nate it with half of the input features z1 in order to help ex-
tract deeper style features in the Transformer. We employ the
architecture of the original Transformer encoder [10], which
consists of multi-head self-attention, layer normalization and
feed forward networks.

3.3. Loss Function

Given the motion-oriented projection flow network G, the
content input ms and the style input nt, we use the follow-
ing loss functions to train the network:

Content Loss and Style Loss. We followed the content loss
Lc and style loss Ls used in the AdaIN [9]:

Lc =
∥∥G (
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)
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2
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,

where G(·) and G−1(·) represent the forward and backward
propagation of M-PFN, respectively. p is the output of AdaIN.
µ, σ represent the mean and standard deviation of the feature.
The M-PFN is trained to balance between Lc and Ls, and thus
it can avoid reconstructing the original motions.

Style Triplet Loss. In order to further promote the cluster-
ing of different style features in the latent space, we adopt
the style triplet loss proposed by Aberman et al. [6] which
exploits the style labels. At each iteration, the loss is calcu-
lated by three motions ms, ws and xt of styles s and t. The
calculation is as follow:

Ltri = [∥f (G (ms))− f (G (ws))∥ − (6)∥∥f (G (ms))− f
(
G
(
xt
))∥∥+ δ]+,



(a) Aberman et al. (b) Wen et. al. (c) Ours

(a) Squeeze (b) w/o squeeze (c) Interpolation (d) Interpolation+Transformer (Ours)

Fig. 2. t-SNE visualization of the encoded style information from motions with different styles. We evaluate the performance of
four methods, namely, with squeeze operation (a), without squeeze operation (b), with interpolation (c) and using Transformer
after interpolation (d).

where f(·) represents the style features which concatenates
the mean and standard deviation of the output of M-PFN for-
ward propagation. δ is a constant margin.

Motion Reconstruction Loss. When the content and style
input are the same motion, we calculate the L1 norm between
the output and input as the motion reconstruction loss:

Lr =
∥∥G−1 (G (ms | ms))−ms

∥∥
1

(7)

Unit Quaternion Loss. This loss encourages the quaternions
of the generated results to be a unit quaternion which pro-
motes the authenticity of the generated motions.

Lqt =
1

T
∥ms − 1∥2 (8)

The final loss function is given by a combination of the
aforementioned loss terms:

L = ωcLc + ωsLs + ωtriLtri + ωrLr + ωqtLqt, (9)

where ωc, ωs, ωtri, ωr and ωqt are scalars, representing the
weights of different loss functions.

4. EXPERIMENTS

4.1. Dataset and Implementation Details

We use the dataset captured by Xia et al. [2] which contains
motion sequences labeled with 8 styles. We take 10% of the
dataset as the test set, and the remaining as the training set.
All the motion sequences in the training set are downsampled
to 30 frames per-second, and trimmed into short overlapping
clips of 32 frames with an overlap of 8. The pre-processed
data contains about 1500 motion clips.

16 flows are stacked in the M-PFN. We use 2 heads for
the multi-head self-attention of the Transformer in the addi-
tive coupling layer. δ in Eq.(6) is set to 5. We set ωc =
3, ωs = 3, ωtri = 0.1, ωr = 4, ωqt = 1 in Eq.(9). The Adam
optimizer is adopted during training. We train a total of 300k
epochs with a batch size of 32.

4.2. Ablation Experiments

Interpolation vs. Squeeze. We compare the performance
between the squeeze operations in the original PFN [8] and
our proposed interpolation method by visualizing the encoded
style information of the motions. We project the statistics
(mean and variance) of the latent code output from the for-
ward propagation of M-PFN into a 2D space by using t-
distributed stochastic neighbor embedding (t-SNE), and col-
orize them according to their style labels. Figure 2 (a)-(c)
show the comparison results of replacing the squeeze opera-
tion with an interpolation one. It can be seen that when apply-
ing squeeze operation, the latent codes of different styles are
indistinguishable, which might lead to a worse decoupling of
content and style during motion style transfer. After removing
the squeeze operation, the latent code information of different
styles start to be separated although there is still overlap. Af-
ter employing our proposed interpolation operation, the clus-
ters have an even better separation, which demonstrates the
efficacy of the interpolation method.

Table 1. Content consistency before and after using Trans-
former. A lower value is better.

Content consistency (↓)
Without Transformer 46.14

With Transformer 31.96

Transformer vs. Convolution. We replace the convolution
modules in the original PFN [8] with Transformer [10] to help
better model the temporal motion data. Figure 2-(d) shows
the incorporated Transformer further improves the clusters
when compared with Figure 2-(c). We also conduct quan-
titative evaluation on the content consistency with the met-
rics proposed by Wen et al. [7], which is able to measure the
similarity of contents from the input content motion and the
output motion regardless of their styles (we recommend the
audiences to refer to their paper for more details). The quan-
titative results in Table 1 show that the content consistency
improves by a large margin (about 30%) after incorporating
Transformer. Please refer to the supplemental video for the
visual results of the motion style transfer.
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Fig. 3. Qualitative comparisons with existing approaches. We visualize a sub-sequence from the entire motion sequence for
brevity by choosing one frame every K frames. For walking samples we use K = 10, and K = 4 or 6 for the rest. The frame
numbers of the output motions should be aligned with the input content motions. The phrases are from the original dataset.
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Fig. 4. Motion style transfer of unseen style. The “strutting” style is unseen during training.

4.3. Comparison with Existing Methods

Motion style transfer. We compare with two representative
methods on unpaired motion style transfer proposed by Aber-
man et al. [6] and Wen et al. [7]. The comparison results are
shown in Fig. 3. Model from Aberman et al. [6] is able to
produce complete motions as the input content motions, but
suffers from inconsistent content. For example, in (A), the
“run” type motion tends to lift arms, but results from Aber-
man et al. follow the pose of the style input and put down the
arms. In contrast, our generated motions still lift arms while
seeming “older” with a bent spine.

Wen et al. [7] require more style frames than the content
ones, so we truncate the content input for their model when
the input motions do not meet this requirement such as (B)
and (C). Although their model generates consistent content
(e.g., the lifting arms in (A)), the performance of style trans-
fer is worse, which can seen from (A) where the generated
motions are not “old” enough and (C) where the generated
motions are not “depressed”. Moreover, it fails to produce
the same number of frames as the content motions. Our ap-
proach works with all these cases with arbitrary length of in-
put style motions and content motions, and is able to gen-
erate complete motion frames. Furthermore, our framework
produces well-stylized motions (e.g., the “depressed” appear-

ance in (C)) while maintaining consistent content. We show
the dynamic results in the supplemental video.
Unseen Styles. We additionally evaluate the performance on
unseen styles to measure the generalization ability. We re-
move all the motions labeled by “strutting” during training
and test with motions of this label. Figure 4 shows Aberman
et al. [6] transfer the style to some extent, albeit with the same
issue of inconsistent content of “kick”. The unreasonable arm
poses from the results of Wen et al. [7] indicate their poor abil-
ity to transfer unseen styles. In contrast, our model performs
well and generates “strutting” kicking.

(a) Aberman et al. (b) Wen et. al. (c) Ours

(a) Squeeze (b) No squeeze (c) Interpolate (d) Interpolate+Transformer(Ours)

Fig. 5. t-SNE visualization of the encoded style information
for unseen styles. “strutting” serves as the unseen styles dur-
ing training.

We also evaluate the performance on unseen styles by vi-
sualizing the encoded style information. As can be seen in the



Fig. 5, our model successfully clusters the samples with the
new style. The model of Aberman et al. [6] classifies part of
the “strutting” motions into styles “proud” or “angry”. Wen
et al. [7] separate the unseen label “strutting” well, but suffer
from a worse clustering for all types of motions because they
do not utilize style labels during training. To quantitatively
evaluate the performance on unseen styles, we follow Wen
et al. and calculate the Silhouette Coefficient (SCoeff) and
Calinski-Harabaz Index (CHI) of the encoded style informa-
tion. The results in Table 2 are in line with the visual results
above, showing that our approach generalizes better on un-
seen styles even when trained on limited samples. We show
more results in the supplemental video.

Table 2. Quantitative evaluation about unseen style. The
evaluation is performed on all the styles. For both metrics,
a higher value is better.

Method SCoeff (↑) CHI (↑)
Aberman et al. 0.649 3499.01

Wen et. al 0.306 653.02
Ours 0.659 4358.83

5. CONCLUSION

In this paper, we propose an unpaired motion style transfer
framework that is able to transfer style from one motion to
another while maintaining the content consistency. We intro-
duce a motion-oriented projection flow network tailored for
motion sequences, in which Transformer is employed and an
interpolation operation is exploited to improve the modeling
ability of temporal data. Comprehensive experiments corrob-
orate the efficiency of our approach as well as the generaliza-
tion ability in unseen styles. While our approach mainly fo-
cuses on motion style transfer, we did not evaluate our frame-
work on motions from different skeletons. This belongs to an-
other direction in the field of motion generation, i.e., motion
retargeting, and we envision a combination of this direction
with our approach for motion style transfer in the future.
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